托馳工業(ye) 傳(chuan) 感器
TOCH INDUSTRIAL SENSORS您值得信賴的品質
應用廣泛性能穩定品質保障服務完善溫度可通過各式各樣的傳(chuan) 感器來測量。 所有傳(chuan) 感器都是通過感知物理特性的某 些變化來判斷溫度。工程師有可能碰到 的6種傳(chuan) 感器類型如下:熱電偶、電阻溫 度探測器(RTD與(yu) 熱敏電阻)、紅外輻 射器、雙金屬器件、液體(ti) 膨脹式器件以 及相變器件。首先,我們(men) 對每種傳(chuan) 感器 進行簡短回顧。
熱電偶主要由兩(liang) 種不同金屬製成的金屬 條或金屬線組成,它們(men) 的一端連接在一 起。如後麵所討論的,該連接點處的溫 度變化會(hui) 引起另外兩(liang) 端之間電動勢(emf) 的變化。隨著溫度升高,熱電偶的這一輸出電動勢emf也會(hui) 增大,但不一定呈 線性關(guan) 係
電阻溫度探測器利用了材料電阻隨材料 溫度而變化這一事實。兩(liang) 種主要類型為(wei) 金屬測溫器件(通常稱為(wei) RTD)和熱敏 電阻。顧名思義(yi) ,RTD依靠金屬電阻的 變化,電阻的增加或多或少都與(yu) 溫度呈 線性關(guan) 係。熱敏電阻依據的是陶瓷半導 體(ti) 中的電阻變化;電阻下降與(yu) 溫度升高 之間存在著非線性關(guan) 係。
紅外傳(chuan) 感器是非接觸式測溫設備。如後 麵所討論的,它們(men) 通過測量材料放射出 的熱輻射來判斷溫度。
雙金屬器件利用了不同金屬之間熱膨脹 率的差異。兩(liang) 條金屬片聯結在一起,受 熱時,一側(ce) 金屬片膨脹大於(yu) 另一側(ce) 金屬片,由此造成的彎曲通過與(yu) 指針相 連的金屬杆係轉變成溫度讀數。這些器 件便於(yu) 攜帶並且不需要任何電源,然而 它們(men) 通常不如熱電偶或RTD,並且 不太適合溫度記錄。
以家用溫度計為(wei) 代表的液體(ti) 膨脹式器件 通常分為(wei) 兩(liang) 類:水銀類和液體(ti) 類。 還有利用氣體(ti) 而非液體(ti) 的類型。水銀被 認為(wei) 是一種對環境有害的物質,因而有 一些法規限製含水銀器件的發運。液體(ti) 膨脹式傳(chuan) 感器無需電源,不存在爆炸 隱患,並且即使多次重複使用也依然可 靠。另一方麵,它們(men) 產(chan) 生的數據通常不 易記錄或傳(chuan) 輸,並且它們(men) 不能進行單點 測量或點測。
相變溫度傳(chuan) 感器由在達到一定溫度時 外觀會(hui) 變化的標簽、顆粒、顏料、油漆 或液晶構成。例如,它們(men) 可與(yu) 汽阱配合 使用,當汽阱超過一定溫度時,附到汽 阱上的傳(chuan) 感器片上的白色圓點將變成 黑色。
響應時間一般為(wei) 幾分鍾,因而這類器件 通常不對溫度瞬變做出響應,並且其 精度低於(yu) 使用其它類型傳(chuan) 感器進行的測 量。而且,相變是不可逆的,液晶顯示 器的情況例外。然而即便如此,如果在 產(chan) 品運輸過程中,例如由於(yu) 技術或法律 方麵的原因,需要確認某件設備或材料 的溫度尚未超過一定數值,相變傳(chuan) 感器 還是比較方便。
主力設備
在化工行業(ye) ,常用的溫度傳(chuan) 感器是熱 電偶、電阻溫度探測器和紅外器件。對 於(yu) 這些器件如何工作以及應該如何使用 它們(men) ,存在著一種普遍的誤解。
熱電偶: 首先看一下熱電偶——也許是 三者中常用但缺乏了解的器件。本 質上,熱電偶由兩(liang) 條一頭連接在一起, 另一頭打開的合金組成。輸出端(開口端;圖1a中的V 1)的電動勢emf是閉合 端溫度 T 1的函數。在該溫度增加時,電 動勢emf也隨之升高。
通常,熱電偶帶有金屬或陶瓷護套,它 將熱電偶與(yu) 各種環境因素隔開。金屬 護套熱電偶還帶有多種類型的塗層(例 如,聚四氟乙烯),以便在腐蝕性溶液 中*地使用。
開口端電動勢不但是閉合端溫度(即 測量點處的溫度)的函數,它也是開 口端溫度(圖1a中的T2 )的函數。隻 有使T2一直處於(yu) 標準溫度,測量的電 1變化的正函數。對 於(yu) T2,行業(ye) 的標準是0°C;因此 大多數表和圖表都假定T 2為(wei) 這一數值。在工業(ye) 儀(yi) 表中,T2實際溫度與(yu) 0°C之間 的差異通常在儀(yi) 表內(nei) 部以電子方式校 正。這種電動勢emf調整稱為(wei) 冷端或CJ 校正。
輸入端與(yu) 輸出端之間導線的溫度變化不 影響輸出電壓,前提是導線為(wei) 熱電偶合 金或熱電等效材料(圖1a)。例如,如 果熱電偶正在測量爐中溫度,而且顯示 讀數的儀(yi) 表在一段距離以外,兩(liang) 者之間 的導線可以從(cong) 另一爐子附近經過並且不 受爐子溫度的影響,除非爐子變得足夠 熱而使導線熔化或者會(hui) *地改變導線 的電熱行為(wei) 。
隻要溫度T1在整個(ge) 連接點處保持不變並 且連接點材料導電,連接點自身的成份 不會(hui) 對熱電偶行為(wei) 產(chan) 生任何影響(圖 1b)。同樣,在任一條或者兩(liang) 條導線中 添加非熱電偶合金也不會(hui) 影響讀數,條 件是這種"摻假"金屬兩(liang) 端的溫度相同 (圖1c)。
熱電偶能夠與(yu) 傳(chuan) 輸路徑中的"摻假"金 屬一起使用,這種能力讓我們(men) 能夠使用 很多設備,如熱電偶開關(guan) 。盡管傳(chuan) 輸導線本身通常為(wei) 熱電偶合金的熱電等 效材料,但若使熱電偶開關(guan) 正常工作, 它必須由鍍金或鍍銀銅合金製成並且 帶有適當的鋼彈簧來良好接觸。 隻要開關(guan) 輸入和輸出連接點處的溫度相 同,其成份變化不會(hui) 造成任何影響。
了解連續熱電偶定律很重要。在圖1d的 上部分顯示的兩(liang) 個(ge) 元件中,一個(ge) 熱電偶 的熱端溫度為(wei) T1,開口端溫度為(wei) T2。第 二個(ge) 熱電偶的熱端溫度為(wei) T2,開口端溫 度為(wei) T3。測量T1的熱電偶的電動勢emf 大小為(wei) VF1;另一個(ge) 熱電偶的電動勢大小 為(wei) V2。兩(liang) 個(ge) 電動勢emf之和,即V1+V2等 於(yu) 電動勢V3,V3是熱電偶在溫度T1與(yu) T3 之間工作總共產(chan) 生的電動勢。根據此定 律,為(wei) 一個(ge) 開口端參考溫度的熱電 偶可用於(yu) 不同的開口端溫度。
RTD:典型的RTD由纖細的鉑線纏繞在 芯棒上組成,還包覆有性塗層。通 常,芯棒和塗層采用玻璃或陶瓷。
RTD的電阻與(yu) 溫度圖的平均斜率通常稱 為(wei) α值(圖2),α代表溫度係數。給定 傳(chuan) 感器的斜率在某些上取決(jue) 於(yu) 其中 鉑的純度。
常用的標準斜率與(yu) 特定純度和成份的 鉑有關(guan) ,其值為(wei) 0.00385(假定電阻測量 單位是歐姆並且溫度單位是攝氏度)。
利用該斜率繪製的電阻與(yu) 溫度曲線即為(wei) 所謂的歐洲曲線,其原因是這種成份的 RTD首先在歐洲大陸廣泛使用。使圖複 雜化的是還有另一種標準斜率,它與(yu) 另 一種差別不大的鉑成份有關(guan) 。這種斜率 的α值略高,為(wei) 0.00392,它遵循所謂美 國曲線。
如果沒有規定一個(ge) 給定RTD的α值,該 值通常為(wei) 0.00385。然而,謹慎的做法是 確定這一點,在要測量的溫度比較高時 尤其如此。這一點在圖2中表現出來,圖 2中顯示的是使用(即0°C時電 阻為(wei) 100歐姆)的RTD的歐洲曲線和美 國曲線。
熱敏電阻:熱敏電阻的電阻與(yu) 溫度呈反 比關(guan) 係,並且這種關(guan) 係為(wei) 高度非線性。 這給必須自行設計電路的工程師帶來了 一個(ge) 嚴(yan) 重問題。但是,將熱敏電阻成對 使用能使其非線性相互抵消,可以 這種困難。另外,廠商提供的盤裝儀(yi) 表 和控製器可以在內(nei) 部對熱敏電阻缺乏線 性進行補償(chang) 。
通常,熱敏電阻根據其在25°C的電阻值 命名。常用的額定電阻為(wei) 2252歐姆,其它的還有5,000歐姆和10,000歐姆。如 果沒有另行,多數儀(yi) 表可使用2252 型熱敏電阻。
圖1.假定已滿足某些條件 (正文中),則熱電偶性 能不受導線溫度變化(a)、 連接點成份(b)的影響,也 不受導線中增加非熱電 偶 合金(c)的影響。正文中還 詳述的一點是,熱電偶的 讀數可以累加(d)。
圖2.給定RTD兩(liang) 種標準電阻與(yu) 溫度關(guan) 係中的一種,這種關(guan) 係通常稱為(wei) a值。尤其是在進行 高溫測量時,在不了解RTD的a值之前 ,明 智 的 工程 師 不 會(hui) 使用該RTD。
紅外傳(chuan) 感器:紅外傳(chuan) 感器測量表麵放射 出的輻射量。所有物質不考慮其溫度, 都會(hui) 放射出電磁能量。在許多加工過 程中,能量都屬於(yu) 紅外區。隨著溫 度
紅外傳(chuan) 感器:紅外傳(chuan) 感器測量表麵放射 出的輻射量。所有物質不考慮其溫度, 都會(hui) 放射出電磁能量。在許多加工過 程中,能量都屬於(yu) 紅外區。隨著溫度 升高,紅外輻射量及其平均頻率都在 增加。
不同材料以不同效率放射。這種效率被量 化成放射率,一個(ge) 介於(yu) 0和1之間的小數 或者介於(yu) 0%與(yu) 100%之間的數。包 括皮膚在內(nei) 的大多數材料效率*, 其放射率經常為(wei) 0.95。另一方麵, 大部分拋光金屬在室溫下往往是效率低下 的放射體(ti) ,其放射率或效率通常為(wei) 20% 或更低。
要正確發揮其功能,紅外測量設備必 須考慮被測量表麵的放射率。通常可 以在參考表中查找到這種放射率。然而, 請記住,該表 無 法 說 明 氧 化 和 表 麵粗糙度等具體(ti) 狀況。當放射率大小 未知時,一種某些時候實用的溫度測 量方法是"強行"使放射率達到 已 知 水平,具體(ti) 做法是在表麵貼上遮蔽膠 帶(放射率為(wei) 95%)或者塗上放射性 很強的油漆。
一些傳(chuan) 感器輸入中可能確實包括一些並非 由測量麵所在的設備或材料放射的能量, 相反,這些能量是測量表麵反射的其它 設備或材料放射的能量。放射率與(yu) 表麵 放射出的能量有關(guan) ,而"反射率"則與(yu) 另一源頭反射的的能量有關(guan) 。不透明材 料的放射率是其反射率的反指標,屬於(yu) 優(you) 良放射體(ti) 的物質不會(hui) 反射過多入射能 量,因而不會(hui) 給傳(chuan) 感器確定表麵溫度造 成太大問題。相反,當測量放射率很低 (例如20%)的目標表麵時,到達 傳(chuan) 感器的很多能量可能是反射能量,例 如反射附近另一溫度的爐子放射的能量。 簡言之,是由高溫的、偽(wei) 反射目標放射 的能量。
紅外器件像照相機,因此具備一定的視 場。例如,紅外器件可以"看到"1度的 視錐或100度的視錐。測量某一表麵時, 該表麵*占滿視場。如果目標表 麵起初沒有占滿視場,請向近移動或者 使用視場更窄的儀(yi) 器。或者在讀取該儀(yi) 器時,將背景 溫度考慮在內(nei) 行了,即根據背景溫度來調整。
選型指南
RTD比熱電偶更加穩定。但另一方 麵,作為(wei) 一個(ge) 類別,RTD的溫度範圍較 窄:RTD的工作範圍為(wei) -250 ~ 850°C (-418 ~ 1562°F),而熱電偶的範圍大 約是-270 ~ 2,300°C(-457 ~ 4172°F)。 熱敏電阻的工作範圍更小,通常在-40 ~150°C(-40 ~ 302°F)之間,但在該範 圍內(nei) 其精度很高。
熱敏電阻和RTD共同存在著一個(ge) 非常重 要的限製。它們(men) 都是電阻式器件,因此 它們(men) 是通過讓電流流過傳(chuan) 感器來工作的。 即使通常使用非常小的電流,但也會(hui) 產(chan) 生一定的熱量,因而可導致溫度讀數 出錯。在測量靜止液體(ti) (即不流動也未 被攪動的液體(ti) )時,電阻式傳(chuan) 感器內(nei) 的 這種自熱效應很,因為(wei) 不易散發產(chan) 生的熱量。熱電偶基本上是零電流器件, 因此不會(hui) 出現這種問題。
紅外傳(chuan) 感器雖然相對較貴,但很適合測 量*溫度。它們(men) 可測量的高溫度達 到3,000°C (5,400°F),遠遠超出了熱電 偶或其它接觸型器件的範圍。
當不想接觸要測溫的表麵時,紅外測量 方式也很有吸引力。因此,易碎表麵或 濕表麵(例如剛從(cong) 烘幹箱中出來的油漆 表麵)都可以用這種方法監測。化 學活性或者可產(chan) 生電噪聲的物質非常適 合紅外測量。在測量需要大量熱電偶或 RTD才能測量的超大表麵(如牆壁)的 溫度時,紅外方式也同樣優(you) 勢。